ABSTRACT
EFFECT OF SALINE AND NON-SALINE WATER ON OKRA CROP PRODUCTION
Journal: Big Data In Water Resources Engineering (BDWRE)
Author: Komal Qasim, Shoukat Ali Shah, Shoukat Ali Soomro, Abdul Ghafoor Siyal, Irfan Ahmed
This is an open access article distributed under the Creative Commons Attribution License CC BY 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
DOI: 10.26480/bdwre.01.2021.24.29
Under the situation of acute water crises and the regular or occasional use of marginal to saline groundwater by the farming community to cultivate the crops, the research needs to be conducted on the use of marginal to saline groundwater based on the guidelines and strategies for the effective use be developed. In context of this, the experiment was conducted at the field research station of the laboratory of the Department of Land and Water Management (LWM) Faculty of Agricultural Engineering (FAE), Sindh Agriculture University (SAU) Tandojam during the year 2019. The experiment was arranged in a completely randomized design with three treatments of varying water qualities with three replications were deployed. The treatments were: W1 = non-Saline water (canal water) E.C= 1.0 dS m-1, W2 = Saline water (groundwater) EC= 4 dS/m-1and W3= Saline water (groundwater) EC= 6 dS/m-1. Okra crop was grown on ridges. The results showed that the soil EC decreased 0.76 dS/m-1 under T1, and increased 0.83 and 1.33 dS/m-1 under T2 and T3, respectively. The soil pH decreased by 0.29, 0.43, and 0.44 under T1, T2, and T3. The soil Mg increased 21.57, 22.11, and 27.03; soil SAR increased 6.15, 7.82, and 8.91; and soil ESP increased 6.51, 8.61, and 10.33 under T1, T2, and T3, respectively. The soil Ca decreased 1.34 under T1 treatment; and increased 0.30 and 10.28 under T2 and T3, respectively. The maximum yield of 18500 kg ha-1 was found with T1 followed by 17391 kg ha-1 with T2 and the lowest yield of 16836 kg ha-1 was found with T3. The highest water productivity of 1.91 kg m-3 was found with T1 treatment followed by 1.79 kg m-3 with T2 treatment and the lowest water productivity of 1.73 kg m-3 was found with T3 treatment.
Pages | 24-29 |
Year | 2021 |
Issue | 1 |
Volume | 2 |